Researchers develop technology capable of real-time drug level monitoring and maintenance

Photo courtesy of Soh Lab

Doctors often struggle to choose the best dose of a drug for each patient — the dose that worked for patient A isn’t enough for patient B, or it is way too much for patient C. The response is governed by a host of factors, including genetics, age, body size, the use of other medications, the presence of diseases and the development of drug tolerances.

Now, Stanford researchers are developing new technology to help deliver an optimal, personalized drug dose. Using their drug delivery system, they were able to automatically administer chemotherapy at the desired concentration in mice, as reported today in Nature Biomedical Engineering.

“This is the first time anyone has been able to continuously control the drug levels in the body in real time. This is a novel concept with big implications because we believe we can adapt our technology to control the levels of a wide range of drugs,” said H. Tom Soh, PhD, senior author and a Stanford professor of radiology, of electrical engineering and of chemical engineering, in a recent news release.

The new technology uses three basic elements to create a closed-loop drug delivery system that continuously monitors and adjusts the infusion rate of the drug as needed.

First, a real-time biosensor measures the concentration of the drug in the bloodstream, using aptamer molecules that bind to a specific target molecule. (Aptamers are like antibodies made out of nucleotides.) When the drug of interest is present in the bloodstream, the aptamers bind to the drug, change shape and cause an electrochemical signal that is detected by an electrode. The more drug present, the more aptamers bind and the larger the detected signal.

Second, a controller with sophisticated software uses this detected signal to determine the optimal drug delivery rate to maintain the desired drug concentration. Third, a programmable infusion pump delivers the drug at the rate specified by the controller.

Although the initial results are very promising, many years of additional research will be needed before the system can be tested on humans. The team also plans to make many improvements, including miniaturizing the device. Currently their system is suitable for chemotherapy drug delivery — using a biosensor the size of a microscope slide, as shown in the photograph — but it is too large to be worn by a patient for continual use.

Still, the authors believe their system could be safely used in humans in the future. They stated in the paper that it would be especially useful for the controlled delivery of chemotherapy drugs to pediatric cancer patients, who are particularly difficult to dose correctly since their drug response varies widely with age and degree of physical development.

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Author: Jennifer Huber

As a Ph.D. physicist and research scientist at the Lawrence Berkeley National Laboratory, I gained extensive experience in medical imaging and technical writing. Now, I am a full-time freelance science writer, editor and science-writing instructor. I've lived in the San Francisco Bay Area most of my life and I frequently enjoy the eclectic cultural, culinary and outdoor activities available in the area.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: