Inherited Neanderthal genes protect us against viruses

Image by Claire Scully

When Neanderthals and modern humans interbred about 50,000 years ago, they exchanged snippets of DNA. Today, Europeans and Asians still carry 2 to 3 percent of Neanderthal DNA in their genomes.

During contact, they also exposed each other to viruses. This could have been deadly for the human species since Neanderthals encountered many novel infectious viruses while living for hundreds of thousands of years outside Africa. Luckily, the Neanderthals’ immune systems evolved genetic defenses against these viruses that were passed on to humans, according to a study reported in Cell.

“Neanderthal genes likely gave us some protection against viruses that our ancestors encountered when they left Africa,” said Dmitri Petrov, PhD, an evolutionary biologist at Stanford’s School of Humanities and Sciences, in a recent Stanford news release.

In the study, the researchers gathered a large dataset of several thousand proteins that interact with viruses in modern humans. They then identified 152 Neanderthal DNA snippets present in the genes that make these proteins. Most of the 152 genes create proteins that interact with a specific type of viruses, RNA viruses, which have RNA encased in a protein shell.

The team identified 11 RNA viruses with a high number of Neanderthal-inherited genes, including HIV, influenza A and hepatitis C. These viruses likely played a key role in shaping human genome evolution, they said.

Overall, their findings suggest that the genomes of humans and other species contain signatures of ancient epidemics.

“It’s similar to paleontology,” said David Enard, PhD, a former postdoctoral fellow in Petrov’s lab. “You can find hints of dinosaurs in different ways. Sometimes you’ll discover actual bones, but sometimes you find only footprints in fossilized mud. Our method is similarly indirect: Because we know which genes interact with which viruses, we can infer the types of viruses responsible for ancient disease outbreaks.”

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Advertisements

New study observes Tuberculosis bacteria attacking antibiotics

Photograph by torange.biz

Tuberculosis was one of the deadliest known diseases, until antibiotics were discovered and used to dramatically reduce its incidence throughout the world. Unfortunately, before the infectious disease could be eradicated, drug-resistant forms emerged as a major public health threat — one quarter of the world’s population is currently infected with TB and 600,000 people develop drug-resistant TB annually.

New research at SLAC National Accelerator Laboratory is seeking to better understand how this antibiotic resistance develops, as recently reported in BMC Biology.

TB is caused by Mycobacterium tuberculosis bacteria, which attack the lungs and then spread to other parts of the body. The bacteria are transmitted to other people through the air, when an infected person speaks, coughs or sneezes.

These bacteria survive antimicrobial drugs by mutating. Their resilience is enhanced by the lengthy and complex nature of standard treatment, which requires patients to take four drugs every day for six to nine months. Patients often don’t complete this full course of TB treatment, causing the bacteria to evolve to survive the antibiotics.

Now, a team of international researchers has investigated an enzyme, called beta-lactamase, that is produced by the Mycobacterium tuberculosis bacteria. They wanted to understand the critical role this enzyme plays in TB drug resistance.

Specifically, the researchers made tiny crystals of beta-lactamase and mixed them with the antibiotic ceftriaxone. A fraction of a second later, they hit the enzyme-antibiotic mixture with ultrafast, intense X-ray pulses from SLAC’s Linac Coherent Light Source — taking millions of X-ray snapshots of the chemical reaction in real time for two seconds.

Putting these snapshots together, the researchers mapped out the 3D structure of the antibiotic as it interacted with the enzyme. They watched the bacterial enzyme bind to the antibiotic and then break open one of its key chemical bonds, making the antibiotic ineffective.

“For structural biologists, this is how we learn exactly how biology functions,” said Mark Hunter, PhD, staff scientist at SLAC and co-author on the study, in a recent news release. “We decipher a molecule’s structure at a certain point in time, and it gives us a better idea of how the molecule works.”

The research team plans to use their method to study additional antibiotics, observing in real time the rapid molecular processes that occur as the bacteria’s enzymes breakdown the drugs. Ultimately, they hope this knowledge can be used to design better antibiotics that can fight off these attacks.

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

New understanding of cellular signaling could help design better drugs, Stanford study finds

Photo by scanrail/Getty Images

An effective drug with minimal side effects — the dream of all drug companies, physicians and patients. But is it an impossible dream?

Perhaps not, in light of new research led by Ron Dror, PhD, an associate professor of computer science at Stanford. IN collaboration with other researchers, Dror used computer simulations and lab experiments to better understand G-protein-coupled receptors, which are critical to drug development.

G-protein-coupled receptors (GPCRs) are involved in an incredible array of physiological processes in the human body, including vision, taste, smell, mood regulation and pain, to name just a few. As a result, GPCRs are the primary target for drugs — about 34 percent of all prescription pharmaceuticals currently on the market target them. Unfortunately, despite all of this drug research, many of the underlying mechanisms of how GPCRs function are still unclear.

We do know that GPCRs act like an inbox for biochemical messages, which alert the cells that nutrients are nearby or communicate information sent by other cells. These messages symbolize a variety of signaling or pharmaceutical molecules. When one of these molecules binds to a GPCR, the GPCR changes shape — triggering many molecular changes within the cell.

Dror’s team investigated the relationship between these GPCRs and a key family of molecules inside cells called arrestins, which can be activated by GPCRs and can lead to unanticipated side effects from medications. Specifically, they sought to understand how GPCRs activate arrestin, so they can use this knowledge in the future to design drugs with fewer side effects.

“We want the good without the bad — more effective drugs with fewer dangerous side effects,” Dror said in a recent Stanford news release. “For GPCRs, that often boils down to whether or not the drug causes the GPCR to stimulate arrestin.”

Researchers know that GPCR is composed of a long tail and a rounder core, which bind to distinct locations on the arrestin molecule. Based on past studies, it was believed that only the receptor’s tail activated the arrestin — causing it to change shape and begin signaling other molecules on its own.

However, Dror’s new study demonstrated that either the tail or core can activate arrestin, as recently reported in Nature. And the core and tail together can activate the arrestin even more, Dror said.

Using this new understanding, the researchers hope in the future to design drugs that activate arrestin in a more selective way to reduce drug side effects.

Dror concluded in the release:

“These behaviors are critical to drug effects, and this should help us in the next phase of our research as we try to learn more about the interplay of GPCRs and arrestins, and potentially, new drugs.”

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

New way to understand tumor diversity combines CRISPR with genetic barcodes

Photo courtesy of PIXNIO

The growth of a particular tumor depends on multiple genetic factors, so it is difficult for cancer researchers to recreate and study this genetic diversity in the lab.

“Human cancers don’t have only one tumor-suppression mutation [which fuels tumor growth] — they have combinations. The question is, how do different mutated genes cooperate or not cooperate with one another?” said Monte Winslow, PhD, a Stanford assistant professor of genetics and of pathology, in a recent Stanford news release.

Now, Winslow and his colleagues have discovered a way to modify cancer-related gene and then track how these combinations of mutations impact tumor growth, as recently reported in Nature Genetics.

The researchers used a powerful gene-editing tool, called CRISPR-Cas9, to introduce multiple, genetically distinct tumors in the lungs of mice. They also attached short, unique DNA sequences to individual tumor cells — which acted as genetic barcodes and multiplied in number as the tumors grew. By counting the different barcodes, they were able to accurately and simultaneously track tumor growth.

“We can now generate a very large number of tumors with specific genetic signatures in the same mouse and follow their growth individually at scale and with high precision. The previous methods were both orders of magnitude slower and much less quantitative,” said Dmitri Petrov, PhD, a senior author of the study and an evolutionary biologist at Stanford, in the release.

The study showed that many tumor-suppressor genes only drive tumor growth when other specific genes are present. The researchers hope to use their new methodology to better understand why tumors with the same mutations sometimes grow to be very large in some patients and remain small in others, they said.

Their technique may also speed up cancer drug development, allowing a drug to be tested on thousands of tumor types simultaneously. Petrov explained in the release:

“We can help understand why targeted therapies and immunotherapies sometimes work amazingly well in patients and sometimes fail. We hypothesize that the genetic identify of tumors might be partially responsible, and we finally have a good way to test this.”

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Big bacteria may be easier to kill, new research suggests

Image by NIAID

The size of a cell is intrinsicThe size of a cell is intrinsically linked with its genetic makeup, growth rate and other fundamental properties. What would happen if scientists could control the size of pathogens?

That possibility isn’t completely outlandish: Stanford researchers have discovered a genetic “tuning knob” that can enlarge or shrink bacteria across a wide range — and this knob can be used to fatten up the bacteria to increase their susceptibility to certain antibiotics, as recently reported in Current Biology.

The research team is led by KC Huang, an associate professor of bioengineering and of microbiology and immunology at Stanford. Huang explained in a recent Stanford Engineering  news article:

“Most strategies to killing bacteria are linear: you find a very specific target and block it with a drug. These findings point in the direction of totally orthogonal therapies, in which you predispose cells to death by tweaking a global property like size.”

The researchers found that a single protein in E. coli, called MreB, acts as a master regulator of cell size by coordinating the construction of cell walls. So they manufactured many copies of the E. coli’s DNA, changing in each copy just one of the 347 letters in MreB’s genetic code. Using fluorescence-activated cell sorting, they then separated the individual cells with different sizes to create a library of cell-size mutants.

The team used this library to study how size impacts a cell’s physiology, including how bacterium grow and survive. For instance, they treated the various E. coli mutants with several antibiotics and found that larger E. coli were more sensitive to the drugs. A larger cell has more surface area and that increases the drug uptake, they said in the paper.

Huang said he hopes their techniques can be applied to other bacteria and used to help human health in the future. He added:

“While we don’t yet know how to twist this bacterial size dial in patients, it’s good to have such an exciting new therapeutic approach as antibiotic resistance becomes increasingly prevalent.”

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

 

Developing “guided missiles” to attack cancer: A podcast featuring a Stanford bioengineer

Photo by Allocer

Chemotherapy attacks cancer by killing cells that are rapidly dividing. But this leads to serious side effects, like intestinal upset and hair fallout, because these normal cells grow quickly.

So researchers like Jennifer Cochran, PhD, a professor and the chair of bioengineering at Stanford, are developing more targeted cancer therapies, dubbed “guided missiles.” She recently described her work to professor and radio show Russ Altman, MD, PhD, on an episode of the Sirius radio show The Future of Everything.

“We, and others, have developed novel proteins that can selectively target cancer cells and then we can attach cargo to them — this is where the missile analogy comes in,” Cochran told Altman. “The cargo that we attach, things like chemotherapy, can then be selectively targeted to the tumor.” The idea is to precisely deliver to the tumor a more poisonous dose than you could deliver systemically, she said.

One way to do this is to bioengineer antibodies, which are molecules that recognize and help neutralize foreign substances like bacteria. However, Cochran’s lab took a slightly different approach. She explained to Altman:

“As amazing as antibodies are, they can have some limitations in that they are very large in terms of molecular size so they have trouble wiggling into a tumor. So we’ve created smaller versions of tumor-targeting proteins that can hopefully penetrate into tumors better. And we’ve then chemically attached chemotherapy molecules to deliver a punch to the cancer cells.”

In order to develop these proteins, her team is expediting protein evolution in a test tube — making favorable properties that would normally evolve over millions of years happen in just a few weeks. To do this, the team uses genetic manipulation to create millions of slightly different protein variants, tests them with high-throughput screening in just a few hours, identifies the ones most desirable for a certain task, and then determines these variants’ DNA sequences.

For example, they used this evolutionary process on a peptide, a small fragment of protein, from the seeds of a plant known as a squirting cucumber to turn the molecule into a favorable drug scaffold. “We ran the protein through this evolution process to create a tumor-targeting protein that we then hooked the chemotherapy agents on to,” said Cochran.

Cochran’s group is also investigating immunotherapy applications for her proteins. She is teaming up with Dane Wittrup, PhD, a professor in chemical engineering and biological engineering at Massachusetts Institute of Technology, who has developed new ways to use the immune system. By combining Cochran’s tumor-targeting technology with Wittrup’s insights into immunotherapy, they are able to give a “one-two punch” and activate multiple factors of the immune system to more effectively attack cancer, she said.

Her research team is also interested in applying their work to other diseases. She explained to Altman:

“We’ve been applying them for cancer, but you can use the same approach to deliver therapies to other types of disease tissue. We have really only just scratched the surface of what we can do. A big driver of this has been the interdisciplinary culture of collaborative research at Stanford. We’ve been working together with physicians, clinicians, scientists, engineers and physicists to tackle really challenging problems.”

Cochran’s bioengineered proteins are not yet available to patients. However, some tumor-targeting molecules are already approved by the U.S. Food and Drug Administration and many more are in the pipeline. “There are a number of molecules that are FDA approved and you might have heard commercials for them,” she told Altman. “But they only work for a subset of patients. So the question is: how do we make them work better for a larger subset of patients?”

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Gene Enhancers Are Important Despite Apparent Redundancy

Cell activity patterns of two gene enhancers (red and green cells). Cells in which both enhancers are active appear yellow. (Credit: Marco Osterwalder).

Every cell in the body has the same DNA and genes, so a cell’s properties and functions are determined by which genes are turned on. That’s why it is critical to understand enhancers, short sections of non-coding DNA that regulate the expression of specific genes.

An enhancer doesn’t have a one-to-one relationship with the gene it controls. Instead, there are many more enhancers than genes and their relationship is unclear. Do many enhancers regulate a given gene’s expression in a given tissue, providing redundancy? Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) investigated this question, and the overall importance of enhancers to development, in two recent studies.

The researchers answered a long-standing question about the role of enhancers. And by better linking the genomic complement of an organism with its expressed characteristics, their work offers new insights that further the growing field of systems biology, which seeks to gain a predictive understanding of living systems.

Perfect Conservation

In their new study published in Cell, the team investigated enhancers containing “ultraconserved elements,” which are at least 200 base pairs in length and are 100 percent identical in the genomes of humans, mice and rats. Ultraconserved elements have been perfectly conserved for over 80 million years since these mammals shared a common ancestor.

Previously, the group individually deleted four ultraconserved brain enhancers in the mouse genome. All four mouse lines were viable and fertile, which shocked the genomics and evolutionary biology research communities who thought these enhancers were critical for life since they have been so perfectly conserved.

“In our follow-up study, we wanted to dig deeper to test two possible explanations,” said Diane Dickel, a research scientist at Berkeley Lab’s Environmental Genomics and Systems Biology Division. “First, maybe there is some redundancy between these enhancer sequences, and losing two of them will cause the mice to be nonviable or infertile. Second, maybe the mice do have something wrong with them, but it’s more subtle.”

In the new study, the team used the gene-editing tool CRISPR-CAS9 to further investigate enhancers near the Arx gene that, when defective, cause neurological and sexual-development disorders in mice and humans. “We focused on Arx because it has an unusually large number of very long ultraconserved sites nearby,” said Dickel who co-led the studies with Len Pennacchio and Axel Visel, both senior scientists in the same division.

Specifically, they knocked out four of Arx’s brain enhancers, which are active in pairs in either the top or bottom of the forebrain. When these enhancers were individually deleted, all the mice were viable and fertile — confirming that ultraconserved enhancers aren’t essential to life within a given generation. When they were deleted in pairs with similar activity, the mice were still viable and fertile — ruling out redundancy as the primary explanation for the absence of major defects upon knockout of individual ultraconserved enhancers.

But were there more subtle brain defects? To answer this question, the researchers teamed up with John Rubenstein, a neurobiologist at UC San Francisco, who provided in-depth neurological phenotyping.

In three of the four cases with only one enhancer deletion, they found abnormalities —either in overall growth or brain development. In one case, the mice had a severe structural defect in the hippocampus. In another case, the mice had fewer cholinergic neurons.

“The changes to the brain in these mice are reminiscent of those seen in humans with seizure disorders or dementia,” Dickel said. “While we don’t know yet if these mice are affected by such problems, it’s likely that the physiological changes we found are selected against in the wild, and that’s why you maintain a high level of conservation at these sites.”

Pictures of a normal part of the mouse forebrain (left) compared with a mouse missing one ultraconserved enhancer (right). (Credit: Athena Ypsilanti /UCSF)

Protective redundancy

While there are only a few hundred ultraconserved sites in the human and mouse genomes, there are also approximately 100,000 other, less well-conserved enhancers. The defects observed upon deletion of individual ultraconserved enhancers raise the question if deletion of less well-conserved enhancers generally causes similar problems. Are defects the exception or the rule? This question was investigated in a second study, led by postdoctoral researcher Marco Osterwalder, which focused on enhancers for limbs. Limb enhancers were targeted because limbs are easy to assess, unlike neurological phenotyping.

As reported today in Nature, the team deleted ten limb enhancers near genes essential for limb development. They expected to see some anomalies but all ten mouse lines had perfectly normal-looking limbs.

However, the team also observed some genes with two enhancers that appeared to be active at the same time during limb development. When the team knocked out such pairs of limb enhancers with similar activity, they saw characteristics like extra digits or differences in bone length — indicating that these enhancers functioned redundantly. “It’s like the pilot and copilot having redundant control sticks in the cockpit,” explained Visel. “Either one can control the plane, but you’re in trouble if you get rid of both control sticks.”

To determine whether or not it’s common to have such a regulatory back-up system, the team computationally analyzed genomic datasets from many different tissues. They determined that genes that control central processes in embryonic development are commonly equipped with sets of enhancers that are likely redundant. In more than 1000 extreme cases, they found sets of five or more enhancers with similar activity patterns controlling the same gene.

Despite the redundancy, these enhancers are evolutionarily conserved, which leads the scientists to surmise that disrupting these enhancers may cause some sort of decrease in fitness in the wild, even if it is so small it can’t be readily detected in the lab.

“We’re not saying these enhancers are perfectly redundant in that one or the other isn’t important, but rather there is a mechanism of protecting against deleterious effects on the order of a given generation,” Pennacchio summarized. “Selection happens over many generations.”

Taken together, these studies demonstrate a varied importance of enhancer redundancy. “The genome is a big place,” Dickel said. “It’s hard to fit every single locus in the genome into one specific model of gene regulation. Some loci have more redundancy than others.”

Broader implications

Complex questions such as these are addressed by biological systems science, where these results can be used to understand the effects of genetic perturbations on inherited and expressed characteristics in a larger context.

Ultimately, the team is interested in whether enhancer mutations contribute to human disease. “With whole human genome sequencing now a reality, we are focusing on studying how human mutations impact health and development in vivo,” Pennacchio said.

The research, funded by the National Institutes of Health, was performed at Berkeley Lab and is a natural evolution of the work that was begun by the DOE and became the Human Genome Project.

The following Berkeley Lab researchers also contributed to the studies: Iros Barozzi, Yoko Fukuda-Yuzawa, Brandon Mannion, Sarah Afzal, Elizabeth Lee, Yiwen Zhu, Ingrid Plajzer-Frick, Catherine Pickle, Momoe Kato, Tyler Garvin, Quan Pham, Anne Harrington, Jennifer Akiyama and Veena Afzal. Also participating in the research were scientists from the University of California San Francisco, University of Basel, and the Centro Andaluz de Biología del Desarrollo.

###

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

This is a reposting of my news release, courtesy of Berkeley Lab.