SLAC’s Riti Sarangi wins 2021 Farrel W. Lytle Award

Ritimuka “Riti” Sarangi is this year’s Lytle Award recipient. (Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory)

Ritimukta “Riti” Sarangi, a senior scientist at the Department of Energy’s SLAC National Accelerator Laboratory, is the latest recipient of the Farrel W. Lytle Award, which recognizes important contributions to synchrotron science and efforts to support users at the Stanford Synchrotron Radiation Lightsource (SSRL), a DOE Office of Science user facility.  

Since its inception in 1998, the Farrel W. Lytle Award has been given annually to SSRL staff members and users from around the world.

“Farrel is a legend in X-ray spectroscopy science. He has made contributions to every aspect of X-ray instrumentation, measurement and analysis,” Sarangi said. “I was completely unaware of my nomination and was thrilled when I received the email” notifying her of the award.

Sarangi started running experiments at SSRL in 2001, when she was a graduate research assistant at Stanford University. After earning her PhD in chemistry, she joined the SSRL staff in 2007. She is currently a senior member of the Structural Molecular Biology group at SSRL and a hard X-ray spectroscopist.

In a nomination letter for the award, Graham George, the Canada research chair in X-ray absorption spectroscopy at the University of Saskatchewan, praised Sarangi’s contributions in research, user support, outreach and leadership. “While SSRL scientific staff includes many outstanding individuals, even among this strong competition Riti stands out,” he wrote. “I have heard Riti described by senior SSRL management as an ‘anchor at SSRL,’ and I think that this description is an accurate one.”

Catalyzing discoveries

Sarangi uses X-ray spectroscopy techniques to study the fundamental properties of enzymes, molecules produced by a living organism that act as a catalyst to bring about specific biochemical reactions. Much of her research focuses on metalloenzymes, a broad group of enzymes with one or more metal ions in their active site, where other molecules bind and undergo a chemical reaction.

“Metalloenzymes perform a wide range of chemical transformations from electron transfer to small molecule activation to more complex molecular transformations,” explained Sarangi. “My goal is to apply X-ray methods towards understanding the structural and electronic details of these metal-containing active sites to shed light on the functional details of metalloenzymes and related systems.”

She is particularly interested in understanding methyl coenzyme M reductase (MCR), a unique nickel-containing enzyme responsible for the generation of 1 billion metric tons of methane annually.

Methane is the main component of natural gas and accounts for almost a quarter of U.S. energy consumption, but it is also a potent greenhouse gas. Understanding the mechanistic aspects of methane activation and synthesis is, therefore, imperative from fundamental, applied-energy, economic and environmental perspectives, Sarangi said.

Sarangi investigates metalloenzymes like MCR using modern X-ray spectroscopic tools and advanced computer simulations that model the quantum physics underlying chemical reactions.

“While spectroscopy provides an experimental window into specific properties about your system, quantum simulation methods provide additional information about structure, bonding and reactivity properties,” she said. “Experiments answer the what and theory answers the why given this specific what.”

Her nominators noted the powerful and unusual nature of her combined methodology. Stephen Ragsdale, professor of Biological Chemistry at the University of Michigan, wrote, “Riti’s approach is continuing to close the gap between experimental and computational aspects of X-ray spectroscopy. It is also absolutely crucial in understanding the complex biological systems that we and others are studying.”

In one recent study, Sarangi and colleagues combined a variety of experimental and theoretical techniques to uncover how enzymes help synthesize methane, revealing a surprising way the enzyme binds to the chemical it converts to methane. Ragsdale called the research “an extraordinary feat.”

Supporting users

Sarangi does a lot more than groundbreaking research, spending much of her time supporting the SSRL user community. “Riti is engaged at every level with user support and is someone who is not afraid to get her hands dirty,” George wrote.

For example, she developed a computer cluster for implementing various theoretical packages that simulate, interpret or augment experimental X-ray spectroscopy data.

“When I started at SSRL in a user support role, I realized these theoretical tools were rarely leveraged by our biological user community and therefore the full potential of their X-ray datasets was often not realized,” said Sarangi. “While I have continued to apply theoretical tools to my own research program, I have also established and made available a high-speed computational cluster to the entire bio-spectroscopy and bio-inspired catalysis user community.”

She has also been crucial to keeping SSRL running during the COVID-19 pandemic, her nominators said.

“She played a pivotal role in generating online access programs and coordinating communication and timeline details so users could continue to accomplish our science during the time when SSRL was closed for visitors,” Timothy Stemmler, assistance vice president for research and professor of pharmaceutical sciences at Wayne State University, wrote in a letter. “Her efforts to allow online access will surely transform how data is collected at the entire lab moving forward, and will lead to many future discoveries, he wrote.

The nominators also applauded Sarangi’s mentoring, training and recruitment of the next generation of scientists. “She has clear skills in organizing and delivering training content and this sets her apart as not just an amazing colleague, but an amazing educator,” wrote Stemmler.

Envisioning the future

Looking forward, Sarangi thinks the lessons learned during the pandemic suggest that more researchers could work remotely – something she said accelerated her scientific and operational engagement with staff, users and collaborators. In 20 years, she expects SSRL X-ray science to become an automated and high-throughput experience that integrates multiple complementary X-ray and non-X-ray measurements.   

She is also leading efforts to plan the future of structural science at lightsources, based on a series of workshops whose reports will develop a robust case for investing in X-ray science.

“This is no easy task and has required mastering the details of techniques adjacent to her expertise, diplomacy in bringing diverse ideas in different disciplines together, and hard work,” wrote Edward Snell, chief executive officer of the Hauptman-Woodward Medical Research Institute, in a nominating letter.

George also praised Sarangi’s leadership and vision. “I have had the distinctive privilege of knowing Farrel quite well, and I am certain that he would approve of this nomination,” he wrote. “The SSRL Users’ executive committee would be hard pressed to find a better candidate.”

The award will be presented to Sarangi at the 2021 SSRL/LCLS Annual Users’ Meeting during the plenary session on September 24. 

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.

This is a reposting of my news story, courtesy of SLAC National Accelerator Laboratory.

Stanford graduate student Aisulu Aitbekova wins 2021 Melvin P. Klein Award

Aisulu Aitbekova

Aisulu Aitbekova, a 2021 doctoral graduate from Stanford University, discovered her passion for research when she traveled from Kazakhstan to the U.S. for a summer internship as a chemical engineering undergraduate. She said that experience inspired her to go to graduate school.

After earning a master’s in chemical engineering at the Massachusetts Institute of Technology, she continued her studies at Stanford University under the supervision of Matteo Cargnello, an assistant professor of chemical engineering and Aitbekova’s doctoral advisor. Much of her thesis work involved beamline studies at the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy’s SLAC National Accelerator Laboratory.  

Now, Aitbekova has been selected to receive the 2021 Melvin P. Klein Scientific Development Award, which recognizes outstanding research accomplishments by undergraduates, graduate students and postdoctoral fellows within three years of completing their doctoral degrees.

In a nomination letter for the award, SLAC Distinguished Staff Scientist Simon Bare praised Aitbekova’s initiative. “She has quickly become proficient in the application of X-ray techniques available at the synchrotron at SLAC. This proficiency and mastery include everything from operating the beamline to analyzing and interpreting the data,” he wrote.

Aitbekova said she felt “absolutely thrilled and grateful” to all of her mentors when she found out about winning the award.

“I’m so thankful for my PhD advisor Matteo Cargnello. My success would not have been possible without his mentorship,” Aitbekova said. “I’m also particularly grateful to Simon Bare, who I consider to be my second advisor. His continuous excitement about X-ray absorption spectroscopy has been the driving force for my work at SSRL.” 

Catalyzing change

Aitbekova said she is passionate about finding solutions to combat climate change. She designs materials to convert harmful pollutant gases into useful fuels and chemicals. To perform these chemical transformations, she develops catalysts and studies their properties using X-ray absorption spectroscopy (XAS). Catalysts are substances that increase rates of chemical reactions without being consumed themselves.

“I have identified that a catalyst’s size, shape and composition profoundly affect its performance in eliminating these gases,” but exactly how those properties affect performance remains unknown, she said. “This problem is further complicated by the dynamic nature of catalytic materials. As a catalyst performs chemical transformations, its structure changes, making it challenging to precisely map a catalyst’s properties to its performance.”

To overcome these barriers, she engineers materials the size of one ten-thousandth the diameter of a human hair and then tracks how they change during reactions using XAS.

In one study, Aitbekova and her colleagues engineered a catalyst using a combination of ruthenium and iron oxide nanoparticles, which they think act in a tag-team fashion to improve the synthesis of fuels from carbon dioxide and hydrogen. Using a prototype in the lab, they achieved much higher yields of ethane, propane and butane than previous catalysts.

Switching gears

While engineering catalysts that convert carbon dioxide into chemicals, she developed a new approach for preparing materials, where small particles are encapsulated inside porous oxide materials – for example, encapsulating ruthenium within a sheath of iron.

However, Aitbekova recognized a completely different application for this new approach: creating a palladium-platinum catalyst that works inside a car’s emission control system.

To eliminate the discharge of noxious emission gases, cars are equipped with a catalytic converter. Exhaust gases pass into the catalytic converter, where they are turned into less harmful gases. The catalysts inside these units are platinum and palladium metals, but these metals gradually lose their efficiency due to their extreme working conditions, she said.

“My platinum and palladium catalysts show excellent stability and performance after being subjected to air and steam at 1,100 degrees Celsius, the harshest operating environment automotive exhaust emission control catalysts could be subjected to,” explained Aitbekova. “Further improvements in these materials and successful testing under true exhaust conditions have a potential to revolutionize the field of automotive exhaust emission control.”

Her nominators agreed, citing it as the highlight of her graduate career.

“This work, currently under review for publication, is truly the remarkable result of Aisulu’s hard work and experience in pivoting from one area to another to make an impact and of her ability to connect multiple fields and solve important problems,” Cargnello wrote.

Amplifying impact

Despite this success, Aitbekova is already focused on how to make an even greater impact through mentoring and future research.

Her nominators all applauded her passion and commitment to mentor the next generation of STEM scholars, as demonstrated by mentoring “a countless number of undergraduates” according to Cargnello and by exchanging letters with middle school students from underrepresented groups.

Part of this passion, Cargnello and others wrote, stems from her experiences growing up in a highly conservative environment with the understanding that homemaking would be her eventual job. Aitbekova’s nominators wrote that they admired the fact that she made her way to Stanford and has acted as an ambassador for the values and principles of diversity and inclusion.

Aitbekova said she embraces the role. “Since my first summer research experience in the USA, I’ve wanted to serve as a bridge to science and graduate school to those who, like me, didn’t have access to such knowledge and resources.”

She will continue to act as a bridge in her next endeavor as a Kavli Nanoscience Institute Prize Postdoctoral Fellow at Caltech, where she plans to expand her work of converting carbon dioxide into fuels by running the chemical transformations with solar energy. That will “bring society one step closer to sustainable energy sources,” she said.

Bare and others praised her drive to make an everyday impact. “She has a natural passion for wanting to understand the physical principles behind the phenomena that she has observed in her research. But this passion for understanding is nicely balanced by her desire to discover something new, and to make a real difference — the practicality that is often missing in someone early in their career,” wrote Bare.

The award will be presented to Aitbekova at the 2021 SSRL/LCLS Annual Users’ Meeting during the plenary session on September 24. 

This is a reposting of my news story, courtesy of SLAC National Accelerator Laboratory.

Behind the scenes with a Stanford pediatric surgeon

In a new series, “Behind the Scenes,” we’re inviting Stanford Medicine physicians, nurses, researchers and staff to share a glimpse of their day.

As a science writer, I talk to a lot of health care providers about their work. But I’ve often wondered what it is really like to be a surgeon. So I was excited to speak with pediatric surgeon Stephanie Chao, MD, about her day.

Chao is a pediatric general surgeon, an assistant professor of surgery and the trauma medical director for Stanford Children’s Health. In addition to performing surgeries on children of all ages, she has a range of research interests, including how to reduce gun-related deaths in children and the hospital cost associated with pediatric firearm injuries.

Morning routine
On days that I operate, I get up between 5:50 and 6 a.m., depending on whether I hit the snooze button. I typically don’t eat breakfast. I don’t drink coffee because I don’t want to get a tremor. I’m out the door by 6:30 a.m. and at the hospital by 7 a.m. I usually go by the bedside of the first patient I’m going to operate on to say hi. The patient is in the operating room by 7:30 a.m. and my cases start.

On non-surgical days, it’s more chaotic. I have a 3-year-old and 1-year-old. So every day there’s a jigsaw puzzle as to whether my husband or I stay to get the kids ready for preschool, and who comes home early.

Part of Stephanie Chao’s day involves checking on patients, including this newborn.

In the operating room
The operating room is the place where I have the privilege of helping children feel better. It’s a very calming place, like a temple. When I walk through the operating room doors, the rest of the world becomes quiet. Even if it is a high-intensity case when the patient is very sick, I know there is a team of nurses, scrub techs and anesthesiologists used to working together in a well-orchestrated fashion. So even when the unexpected arises, we can focus on the patient with full confidence that we’ll find a solution.

There are occasions when babies are so sick that we need silence in the operating room. Everyone becomes hyper-attuned to all the beeps on the monitors. When patients are not as critically sick, I often play a Pandora station that I created called “Happy.” I started it with Pharrell Williams’ “Happy” and then Pandora pulled in other upbeat songs, including a bunch of Taylor Swift songs, so everyone thinks I’m a big Taylor Swift fan.

The OR staff call me by my first name. I believe that if everyone is relaxed and feels like they have an equal say in the procedure, we work better as a well-oiled machine for the benefit of the patient.

“The OR staff call me by my first name,” Stephanie Chao said.

Favorite task
Some of the most rewarding times of my day are when I sit down with patients and their families to hear their concerns, to reassure them and to help them understand what to expect — and hopefully to make a scary situation a little less so. As a parent, I realize just how hard it is to entrust one’s child completely in the hands of another. I also like to see patients in the hospital as they’re recovering.

Favorite time
The best part of the day is when I come home. When I open the door into the house, my kids recognize that sound and I hear their little footsteps as they run towards the door, shrieking with joy.

Evening ritual
When my husband and I get home, on nights I am not on call, I cook dinner in the middle of the chaos of hearing about the kids’ day. Hopefully, we “sit down” to eat by 6:20 or 6:30 p.m., and I mean that term loosely. It’s a circus, but eventually everyone is somewhat fed.

And then we do bath time and bedtime. There’s a daily negotiation with my three-year-old on how many books we read before bed. On school nights, she’s allowed three books but she tries to negotiate for 10.

Eventually, we get both kids down for the night. Then my husband and I clean up the mess of the day and try to have a coherent conversation with each other. But by then both of us are exhausted. I try to log on again to finish some work, read or review papers. I usually go to sleep around 11 p.m.

Managing it all
When I can carve out time to do relaxing things for myself, like go to the gym, that is great. But it’s rare and I remind myself that I am blessed with a job that I love and a wonderfully active family.

The result sometimes feels like chaos, but I don’t want to wish my life away waiting for my kids to get older and for life to get easier. Trying to live in the moment, and embracing it, is how I find balance.

Photos by Rachel Baker

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.