Posted tagged ‘surgery’

New course highlights how surgeons can serve their communities

December 29, 2017

Photo courtesy of Jecca Steinberg

Stanford medical students Jecca Steinberg and Paloma Marin-Nevarez want to spread the word that service-minded medical students can care for underserved communities by specializing in surgery. With the help of their mentor James Lau, MD, they have created an upcoming seminar series for medical students called “Service Through Surgery,” which showcases how surgeons can address health inequities.

Beginning in January, the new 10-week course will expose Stanford medical students to a diverse group of surgical leaders who are passionate about improving health equity through surgery. I connected with Steinberg, shown on the left in the photo, and Marin-Nevarez to learn more.

What inspired you to create the Service through Surgery seminar course?

Marin-Nevarez: “I emigrated from Mexico when I was 10 and settled in a low-income community in south Los Angeles. I never really considered myself disadvantaged until I went to college and experienced firsthand the shortcomings of my education system. Ever since, I knew I would make my life’s work to serve the underserved in communities like my own.

In my second year of medical school, I fell in love with surgery. However, when I thought about being a ‘community physician,’ I didn’t see how surgery would fit into that picture. The speakers in this course will show students with the same internal struggle as mine that they don’t need to compromise their values in order to pursue their dreams.”

What role can diversity play in overcoming health inequities?

Steinberg: “Low-income, minority communities continue to receive inadequate surgical services and bear unconscionable health burdens. Research has demonstrated that increasing diversity among physicians improves healthcare access and outcomes for traditionally disenfranchised communities, but surgery continues to trail behind other medical specialties in racial, socioeconomic and gender diversity. So the surgical workforce represents an underutilized resource for decreasing health inequities and improving the health of our communities.”

Marin-Nevarez: “A more diverse workforce leads to better outcomes for the underserved because minority patients are more likely to seek care from and be more comfortable with physicians from diverse backgrounds. And physicians from diverse backgrounds are more likely to treat patients of color in underserved communities.”

What causes surgery to be less diverse than other medical specialties?

Marin-Nevarez: “Because of unequal opportunities — especially for communities of color — surgeons are not as diverse as they should be. Because of this lack of diversity, there is a lack of mentorship that then perpetuates the cycle.

Mentorship can make a huge difference in recruiting people into a field. For example, James Lau, MD, is an amazing mentor — he was the first person to make me believe that being the first surgeon in my family may be an attainable goal. Those who ‘make it’ without mentorship most likely had access to extra resources or had to work much harder than their counterparts, or both.”

How will your seminar course inspire change?

Steinberg: “Our seminar course will create an opportunity for Stanford medical students to meet and form relationships with accomplished physicians who have combined their passions for diminishing inequities and surgery. It will show the incredible impact surgeons can make on their community. For example, Matias Bruzoni, MD, will talk about a Spanish clinic he created from scratch to improve the surgical experiences and outcomes of Spanish speaking patients. And Sherry Wren, MD, will provide her perspective on serving veterans domestically and populations around the world, exploring the adversity she faced in dedicating her career to social service.

When students connect with role models like these with a similar background and passions, they are more likely to follow in the trajectory of that role model and consider careers that might have previously seemed unattainable. We hope this seminar will provide that initial connection.”

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Advertisements

Stanford researchers develop simulations to improve heart surgeries

February 9, 2017

MRI or CT scans provide physicians with a detailed picture of their patients’ internal anatomy. Heart surgeons often use these images to plan surgeries.

Unfortunately, these anatomical images don’t show how the blood is flowing through the vessels — which is critical, according to Alison Marsden, PhD, a Stanford associate professor of pediatrics and of bioengineering. In the video above, she explains that many surgeons currently use a pencil and paper to sketch out their surgical plan based on the patient’s images. She hopes to change this.

Marsden and her colleagues at Stanford’s Cardiovascular Biomechanics Computational Lab are developing a new technique — using imaging data and specialized simulation software — to predict what is likely to happen during heart surgery.

“What we’re trying to do is bring in that missing piece of what are these detailed blood flow patterns and what might happen if we go in and make an intervention, for example, opening up a blocked blood vessel or putting in a bypass graft,” Marsden said in a recent Stanford Engineering news story.

Their open source software, called SimVascular, loads the imaging data, constructs a 3D anatomical model of the heart and then simulates the patient’s blood flow. It has already been used to help design the surgical plan for several babies born with a severe form of congenital heart disease, Marsden said. However, more research is needed to determine whether the technique improves patient outcomes before it can be widely used in the clinic.

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

From art to surgery: Stanford alumna reconstructs new ears for children

July 15, 2016
Dr Sheryl Lewin in the operating room (courtesy of Lewin)

Dr Sheryl Lewin in the operating room (courtesy of Lewin)

Some children are born with a missing or malformed small ear due to a rare congenital condition called microtia. In most cases, the child’s ear canal is also very small or absent, resulting in hearing loss.

The surgical procedures used to correct microtia require the skills of both a sculptor and surgeon — making it the perfect specialty for Sheryl Lewin, MD, a craniofacial plastic surgeon who began her training as an artist and architect.

Lewin’s career has been passionately devoted to treating microtia through her private medical practice and nonprofit organization called Earicles, which helps children born without ears through education, research and free or reduced-cost treatment. I recently spoke with Lewin about her work: 

As an architect major, what inspired you to become a physician?

“When I was in architecture school at UC Berkeley, I loved the challenge of design, where you can use your own creativity to solve visual and spatial problems. My program was heavily artistic — we drew, painted and sculpted. But what was missing was the ability to use those skills to directly affect someone’s life in a tangible and meaningful way.

During college, I lived across the street from an elementary school that served underprivileged kids, which inspired me to start a volunteer organization of Berkeley undergraduates that mentored disadvantaged children in the local community. I recognized that I really enjoyed working and helping kids, and medicine was a way to do that.

When I went to medical school at Stanford, I was drawn to surgery as it gave me the ability to work with my hands. I decided to pursue pediatric plastic surgery after I saw my first cleft lip surgery on a tiny infant, whose life was transformed in a couple of hours. I realized it absolutely used the same skill set that I was used to working in: design, thinking three-dimensionally and visualizing symmetry. It was very much like sculpture.

Years later in medical school, I saw my first surgery to correct a rare condition called microtia. Once I saw what was involved, there was no doubt that I would love the challenge of making ears, which is considered by many plastic surgeons to be one of the most technically difficult things we do. But what really sealed the deal was the intangible feeling you get taking care of these children and their families. I came home that day and told my husband, ‘I know what I want to do with the rest of my life.’”

What is microtia?

Microtia ear before and after surgery (Courtesy of Lewin)

Child’s ear before and after microtia reconstruction surgery (courtesy of Lewin)

“Microtia is a congenital condition in which the ear does not develop properly. The word microtia translates to “small ear.” It occurs in about one in 6,000 to 12,000 children worldwide, with a higher prevalence among Hispanics, Asians and Native Americans.

The cause of microtia is not well understood, particularly regarding the role of environmental and genetic factors. Some medications have been linked to microtia when ingested in the first trimester of pregnancy, including Thalidomide and Accutane. However, it’s important to understand that microtia is rarely caused by what a mother does during pregnancy.”

How do you treat microtia? 

“Ninety-five percent of the world treats microtia by removing rib cartilage from the chest, carving it into an ear framework and then slipping it under the skin. In order to have enough cartilage, surgery must be delayed until children are six to ten years old. Three to four surgeries are required with this technique, and the ability to match the opposite ear is limited.

Several colleagues and I use a different technique. In an eight to ten hour outpatient surgery, I customize a porous polyethylene implant into a three-dimensional ear shape that matches the opposite ear. This biocompatible implant is then covered with vascular tissue. This allows for a symmetric and natural appearing ear to be created in just one operation as early as three years of age.

Children with microtia almost always have conductive hearing loss — since the ear canal is missing but the auditory nerve is functional. During the ear reconstruction surgery, I can do an additional scarless procedure to help restore hearing. I implant a titanium device in the skull that is connected to a bone conduction hearing processor, commonly referred to as a BAHA. The hearing processor captures sound and transmits these vibrations to the skull through the implant, which stimulates the auditory nerve that processes it as sound.”

What is most rewarding about your work?

“This surgery not only helps provide functionality, such as giving children the ability to wear eyeglasses, but it’s often about helping children attain the simplest human need: to feel the same as everyone else.

One of my favorite moments involved a four-year old boy named Davin, who had microtia of both ears. I was sitting next to him as he was about to see his second ear for the first time. He looked me in the eyes and said, “Dr. Lewin, do I have two big boy ears now?” I said, “Yes Davin, two beautiful ears.” Then, out of nowhere, he leaned over and planted a big kiss right on my lips and said, “Dr. Lewin, I love you.” For a moment, I was speechless, and then managed to say, “Davin, I love you too.” It really can’t get any better than that in my book.”

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Surgery to find your voice: A Q&A with expert Anna Messner

January 4, 2016
5540462170_5ca4645115_o_flickr_HowardLake_560x.315jpg

Photo by Howard Lake

When we’re in a noisy restaurant, it’s really difficult to hear my young niece speak. She can only talk very quietly, because she has a paralyzed vocal cord.

Like many children born very premature, the nerve going to her vocal cord was likely damaged when she had heart surgery soon after she was born. Her inability to be heard frustrates her, especially now that she is in school. However, a rare surgery may bring her the hope of a near-normal voice.

Stanford surgeons recently began performing laryngeal reinnervation surgery, which essentially rewires the paralyzed vocal cord with a new nerve supply. I recently spoke with Anna Messner, MD, a professor of otolaryngology and pediatrics who sees patients at Lucile Packard Children’s Hospital Stanford, about laryngeal reinnervation surgery.

What standard surgical procedures are used to treat unilateral vocal cord paralysis?

In general, the surgical procedures bulk up the paralyzed vocal cord to move it towards the midline of the body, making it easier for the other vocal cord to compensate and close. There are two standard surgeries. We can do injection laryngoplasty, where we inject a substance into the paralyzed vocal cord to thicken it. Unfortunately, this procedure often needs to be repeated multiple times, if it works at all. We can also insert a medialization implant in teenagers and adults, but this doesn’t work for growing kids. If we put an implant into a two year old, it wouldn’t be an appropriate size when he is 10.

How does laryngeal reinnervation surgery work?

No matter what we do, we can’t make the vocal cord move. We can never make it perfect again. What we can do is hook up one of the other nerves in the neck to the recurrent laryngeal nerve that goes to the vocal cord. And that helps some new nerve fibers go to the vocal cord, making the vocal cord stronger and thicker. As a result, the voices on these kids improve significantly.

The surgery itself is fairly straightforward and only takes about an hour. The children typical go home the same day or just stay overnight, and they feel back to normal in a couple of days. But then we have to wait five to six months for the nerve fibers to grow before we can see real improvement in the voice. The only downside is that it takes a long time to see the effects of the surgery.

What inspired you to learn the laryngeal reinnervation procedure?

We have a large pediatric cardiac surgery program at Stanford, so we have quite a few patients with vocal cord paralysis. Most of our patients are born prematurely and need heart surgery, which can pull and damage the nerve that goes to the vocal cord on one side. After these surgeries, the damaged vocal cord starts working again in just over a third of the cases. But for the rest of the kids, the vocal cord remains paralyzed.

The standard surgeries just don’t work very well, so we’ve had a longstanding interest in finding alternatives. I saw Marshall Smith, MD, the medical director of the Voice Disorders Center at University of Utah, give a presentation on his clinical trials. So I observed him performing the reinnervation surgery about 1.5 years ago, and since then I’ve been performing the surgery. One of my colleagues, Doug Sidell, MD, also performs the surgery.

How does the voice improvement impact the patients?

The voice improvement makes a huge impact on the children, especially in school. For instance, when the children are trying to read a story or give a presentation in front of the classroom, now they can actually be heard. The results are very encouraging. The surgery has the potential for huge, life-long voice improvement.

This is a reposting of my Scope medical blog story, courtesy of Stanford School of Medicine.

New Approach to Using Stem Cells During Orthopedic Surgery

February 17, 2015
Device used by UC Davis researchers to rapidly concentrate stem cells, which are harvested from surgical irrigation fluid during an orthopedic procedure (Courtesy of SynGen Inc).

Device used by UC Davis researchers to rapidly concentrate stem cells, which are harvested from surgical irrigation fluid during an orthopedic procedure (Courtesy of SynGen Inc).

About 6 million people in North America suffer bone fractures each year and 5 to 10 percent of these patients are resistant to healing, according to the American Academy of Orthopaedic Surgeons. This means that about half a million Americans annually have fractures that don’t heal. UC Davis researchers are developing an improved surgical therapy for such fractures, using stem cells and innovative technology.

After a broken bone is treated, new bone tissue usually begins to form and connect the broken pieces. However, some bone fractures don’t heal due to a lack of adequate stability, blood flow, or large bone loss. For instance, severe bone fractures that are caused by a high-energy car wreck are more likely not to heal. Several other factors increase the risk of non-healing bones, including older age, diabetes, poor nutrition, use of tobacco, and severe anemia. Traditional treatments to address this problem, such as bone grafts taken from another part of the body, often lead to pain, dysfunctional limbs, and disabilities.

In the last several years, the application of stem cells directly to the wound site has emerged as an improved way to treat non-healing fractures. However, acquiring the necessary stem cells from the patient, a matched donor, or embryo is problematic. Ideally the stem cells come directly from the patient, but this requires a painful surgical procedure with general anesthesia during which a large needle is used to retrieve the stem cells from the hip. In addition, the retrieved stem cells need to be isolated before they can be transplanted back into a patient, so a second surgery is required with a long combined recovery period.

“People come to me after suffering for six months or more with a non-healing bone fracture, often after multiple surgeries, infections and hospitalizations,” said Mark Lee, UC Davis associate professor of orthopaedic surgery, in a press release. “Stem cell therapy for these patients can be miraculous, and it is exciting to explore an important new way to improve on its delivery.”

Mark Lee, UC Davis associate professor of orthopedic surgery (Courtesy of UC Davis).

Mark Lee, UC Davis associate professor of orthopedic surgery (Courtesy of UC Davis).

In their new clinical trial, Lee’s team is testing a new SynGen Inc. device that processes the irrigation fluid obtained during an orthopedic procedure. This irrigation fluid contains abundant mesenchymal stem cells and other factors that can be used to help make new blood vessels and improve wound healing.

During the surgery, the irrigation fluid is aspirated and captured. The fluid is then centrifuged and processed using the new SynGen device, which rapidly isolates a concentration of mesenchymal stem cells in less then 30 minutes. These concentrated stem cells are then delivered to the patient’s fracture during the same surgery. The device is about the size of a food processor, so it can be easily used in an operating room.

“The device’s small size and rapid capabilities allow autologous stem cell transplantation to take place during a single operation in the operating room rather than requiring two procedures over a period of weeks,” said Lee in the press release. “This is a dramatic difference that promises to make a real impact on wound healing and patient recovery.”

The UC Davis researchers are already testing this new surgical treatment on patients. However, it is unclear when this treatment could move into general clinical practice.

A modified version of this story is posted on my KQED Science blog.


%d bloggers like this: