Deep brain stimulation might benefit those with severe alcoholism, preliminary studies show

Photo by pologi

Alcoholics struggling to stay sober are faced with countless triggers that can lead to relapse — driving past a bar, getting together with former drinking buddies or even just feeling down. 

And this is a big problem. Alcoholism is a growing epidemic responsible for at least a quarter trillion dollars in US health care costs per year, as well as inestimable anguish. Current medical therapies suffer from high rates of noncompliance and variable effectiveness.

In the future, severe alcoholics with multiple failed attempts at intensive medical therapies and in-patient rehabilitation may have a different treatment option for their addiction — deep brain stimulation (DBS) — as recently reported in a review article by Stanford researchers in Neurosurgical Focus.

Currently, deep brain stimulation therapy for alcohol use disorders is not approved by the U.S. Food and Drug Administration, but it is widely used to treat Parkinson’s disease and obsessive-compulsive disorder.

“DBS is a minimally-invasive brain surgery,” explained senior author Casey Halpern, MD, an assistant professor of neurosurgery at Stanford. “For Parkinson’s, we place deep brain stimulators to restore normal function of the region in the brain known to be dysfunctional. Patients improve immediately when a small dose of current is delivered to this area. We anticipate a similar treatment will be possible for alcoholism. At the moment, we’re performing animal studies to optimize this potential therapy and to learn its underlying mechanism of action.”

For alcohol use disorders,  researchers are targeting the nucleus accumbens, which plays a central role in the brain’s reward circuitry. They previously found that brain stimulation of this region could reduce impulsive behavior.

“The nucleus accumbens is triggered when patients anticipate a reward or prior to completing a rewarding behavior. It’s been shown to be perturbed in both addictive disorders and OCD,” said Allen Ho, MD, a Stanford neurosurgery resident working with Halpern. “By targeting this brain structure with stimulation, we hope to modulate the reward circuit in the brain to help patients resist the temptation to indulge in a binge and other addictive behaviors.”

The review article outlines extensive animal studies and pilot human subject studies have shown promising reductions in alcohol consumption and, in some cases, long-term abstinence.

According to Ho, this success is in part due to the fact that DBS doesn’t rely on patient compliance with therapy sessions, in-patient rehab, medications and abstinence. “Once the patient makes a decision to undergo treatment and the stimulator is implanted and turned on, they don’t have to make a conscious decision to pursue treatment — it is ‘on’ all the time,” said Ho.

Brain surgery may sound scary, but Ho explained that DBS is one of the safest and least invasive operations that they do as neurosurgeons. He believes alcoholics will consider the treatment since the addiction can devastate their lives, he said.

The Stanford team also hopes to apply deep brain stimulation to other addictions. “Should DBS prove effective for alcoholism, we anticipate a similar therapy could be very helpful for all addictions and even obesity,” said Halpern.

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Advertisements

New simulations may guide future brain surgeries

A team of researchers, led by Ellen Kuhl, PhD, a Stanford professor of mechanical engineering, is developing a new simulation tool to help guide surgeons to more safely relieve brain swelling.

Brain swelling can be caused by a trauma, such as a stroke, tumor or traumatic brain injury. This swelling builds up pressure inside the skull that can lead to brain damage or death, so surgeons sometimes perform a decompressive craniectomy — removing a large portion of the skull to allow the brain to mushroom out. But the surgeons need to know where and how big to cut the skull, which is no easy task.

A recent news release explains,

“… The shape of the brain is essential to its function. It consists of billions of fragile filaments, called axons, bundled together in purposeful patterns. When parts of this amalgam bulge out, axons stretch and shear. Surgeons currently rely on experience to limit the collateral damage that might occur when dire circumstances force them to perform a decompressive craniectomy.

‘This is a new tool to help surgeons decide where and how big to make the hole, by giving them a way to visualize the effects of the procedure on the brain tissue,’ Kuhl said.”

Kuhl is working with Johannes Weickenmeier, PhD, a postdoctoral research fellow at Stanford, and Alain Goreily, PhD, a professor of mathematics at the University of Oxford, to create mathematical models based on magnetic resonance brain images. These simulations will predict how an injury affects specific parts of the brain — showing the predictions on a color-coded brain map, with extreme damage in red, mild damage in green and minimally affected areas in blue.

The team then used these maps to “play what-if scenarios to illustrate how skull openings of different sizes in different regions affect the axons inside the brain,” the news release states.

The researchers plan to work with neurosurgeons to improve their new simulation tools, hoping one day to allow neurosurgeons to accurately peer beneath the skull and make more informed surgical plans.

Video courtesy of Stanford University.

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.