Posted tagged ‘photovoltaic’

Solar-Powered Drip Irrigation May Save Lives in Africa

June 1, 2010

Americans spend on average 12.4% of their paycheck on food according to the U.S. Department of Labor’s latest survey. In contrast, sub-Saharan African communities spend 50-80% of their income on food, even though they are engaged in agricultural production as their main livelihood. These communities rely on rain-fed agriculture for crop production, despite having a short annual rainy season of only 3-6 months. Traditionally women and girls are responsible for hauling water by hand from very long distances in order to grow some crops, particularly during the long dry season.

Only 4% of cropland is irrigated in sub-Saharan Africa. Clearly irrigation could help improve quality of life for these food-insecure communities, if a water source is available. The most efficient type of irrigation for such a dry climate is drip (micro) irrigation, which delivers water and fertilizer directly to the roots of a plant. Low-pressure drip irrigation systems require only 1 m of pressure to irrigate plots of up to 1,000 square meters (0.25 acres). However, this irrigation technology requires access to a reliable water source.

One solution is a photovoltaic-powered drip irrigation system that combines the efficiency of the drip irrigation with the reliability of a solar-powered water pump. In such a system, a photovoltaic solar array powers a surface or submersible pump (depending on the water source) that feeds water into a reservoir. The reservoir then gravity-distributes the water to the low-pressure drip irrigation system. Energy is stored via the height of column of water in the reservoir. These systems can be configured so that no batteries are required. The pump only runs during the daytime and the system passively self-regulates. Namely, the volume of water increases on clear hot days when plants need the most water.

This kind of solar-powered drip irrigation system was tested in two rural villages in Northern Benin. The systems were installed and financed by an Non-governmental Organization, Solar Electric Light Fund, with the goal of boosting vegetable production from communal gardens in order to combat high malnutrition and poverty levels. The research was performed in collaboration with Stanford University. This NGO-academic research team scientifically evaluated the impact of the irrigation system on the community through a randomized controlled project that was rigorously studied and analyzed. The study results were recently published by Stanford University in the Proceeding of the National Academy of Sciences.

Three solar-powered drip irrigation systems were installed in two villages. Each irrigation system was used collectively by an agricultural group of 30-35 women, who each farmed her own 120 square meter plot and some additional shared plots used for group expenses. Researchers monitored these communities, as well as two “control” villages in which women’s agricultural groups grew vegetables by hand watering. This allowed a comparison between the solar-powered drip irrigation system to traditional watering method.

Each of the solar-powered irrigation systems supplied on average 1.9 tonnes of produce per month — including high-valued crops such as tomatoes, okra, peppers, eggplants, carrots, and greens — without displacing other agricultural production. The women farmers kept on average 18% by weight of the vegetables and sold the rest at local markets. As a result, vegetable intake across all villages increased by about 1 serving (150 g raw weight) per day during the rainy season. For the villages with irrigation systems, the vegetable intake rose to 3-5 servings per day even during the dry season. Overall the users of the irrigation systems showed remarkable benefits even in the first year, compared with the control households. The article states, “Their standard of living increased relative to the non-beneficiaries (by 80% of the baseline), their consumption of vegetables increased to the Recommended Daily Allowance, and the income generated by production of market vegetables enabled them to purchase staples and protein during the dry season.”

Hardly anyone is going to argue against the potential benefit of irrigation in Africa. However, one question remains — is the expense of a solar-powered system really necessary? The Stanford researchers would argue that it is, despite the expensive up-front costs. They compared their irrigation system with a hypothetical alternative system that used a liquid-fuel (gasoline, kerosene, or diesel) engine-driven pump, instead of the photovoltaic array and pump. This alternate pump can have significant problems, because fuel supplies can be unreliable and fuel prices volatile. According to their analysis, the solar-powered irrigation system is actually more cost effective in the long run, particular when fuel prices are high. It is also better for the environment since it doesn’t cause carbon-emissions.

The solar-powered drip irrigation system in the Benin project cost approximately $18,000 to install ($475 per 120 square meter plot) and requires about $5,750 ($143 per plot) per year to maintain. Based on the projected earnings of the farmers, the system should pay for itself in about 2.3 years. In addition, the cost of the photovoltaic arrays is expected to lower for larger-scale projects.

The project in Benin isn’t the only one underway. Solar-powered drip irrigation systems are also being installed by other groups in different areas of the world. For instance, the Sustainable Agriculture Water Management Project has installed solar-powered drip irrigation systems to 5,000 farmers in Sri Lanka’s dry zones. The hope is that these international efforts can provide substantial economic, nutritional, and environmental benefits to food-insecure impoverished communities.

Advertisements

%d bloggers like this: