Build-your-own robot can tackle biology and chemistry experiments

Building off-the-shelf Lego robots can teach kids important skills like mechanical engineering, computer programming and teamwork. Now, Stanford bioengineers are adding life sciences and chemistry to the list.

Stanford researchers have developed a liquid-handling Lego robot capable of a range of experiments — integrating robotics, biology, chemistry, programming and hands-on learning into a single, open-source educational tool. Built from a cheap plastic syringe and a Lego Mindstorm EV3 Education kit, the robots are designed to pipette fluids into and out of plastic containers commonly used in laboratories.

The team also designed and tested several fundamental experiments for elementary and middle school students using their DIY robots and common household items like food coloring, salt or sugar, which are described in a recent paper published in PLOS Biology.

One of the favorites is an experiment that teaches kids about density and buoyancy by sequentially layering colored liquids with different salt concentrations into a single test tube — demonstrating that the liquids float on top of each other instead of mixing, and explaining why objects float or sink.

“We would love it if more students, do-it-yourself learners, STEM teachers and researchers would embrace this type of work, get excited and then develop additional open-source instructions and lesson plans for others to use,” said Ingmar Riedel-Krus. PhD, assistant professor of bioengineering, in a recent news release.

This is a reposting of my Scope blog story, courtesy of Stanford School of Medicine.

Tagging Along on a Fantasy Field Trip

The Field Trip Podcast ico
The Field Trip Podcast icon, courtesy of Kara Platoni.

Looking back, the only school field trip that I remember was our trip to the San Francisco Exploratorium. I enjoyed the fun interactive science exhibits, but what I remember best is the tactile dome. I entered into total darkness and spent the next hour feeling, crawling and sliding my way through a 3-D maze. The purpose of the tactile room is to explore a disorienting world in which you can only rely on touch. For a kid, the challenge is to do that as quickly as possible.

However, that field trip is tame compared to what Kara Platoni, Eric Simons, and Casey Miner have in mind. They’ve launched a new podcast, The Field Trip, that broadcasts their real world science adventures. To add a little more intellectual rigor, they also interview an expert guest in their radio studio for each episode. Beginning on May 14, a new episode will air weekly each Monday through June 4.

For more information on the podcast series, check out my KQED Quest blog.

My First Physics Teacher

I always liked math. It took work, but it came pretty easily to me most of the time. I liked being able to work out the abstract problems and get the right answer. I liked getting positive feedback and encouragement from my teachers, as one of the top math students. Then I took physics senior year in high school. Suddenly sin(x) was equal to x, if x was a small angle. Suddenly all the nice rules of math were up for grabs and approximations had to be devised to solve the problems. Initially I found this to be hard. Sometimes I still do, even as a working research physicist. Because suddenly creativity and insight were a major part of my science education.

I still remember my first physics teacher. He had been working in industry for years prior to his new teaching career, so he was a “real” physicist instead of just a high school teacher. The lesson that I remember the most was about lenses. Before the teacher lectured on the subject in class, he handed out to each group a lens and a flashlight. We were suppose to devise experiments to determine the unknown properties of the lens. Most people tried various experiments inside the dark classroom, shining the flashlight on the lens (with only a vague understanding of what we were even looking for). A few people also went outside to use the sun as a very distant source of light. Very few, if any, of us figured out the lens equation or imaging properties of the lens. However, we ALL paid attention to the next lecture on lenses. Our teacher challenged and engaged us. He made us think, instead of just having us solve cookbook problems for the upcoming tests. My first introduction to physics was hard but interesting. And when I went off to college, it gave me a head start in my physics career. If I could grade my high school physics teacher, I’d give him an A.

A lot of women have stories about their science and math teachers — what did they do right or wrong? How did they influence your career, education and life? Now you have the chance to share your stories. Under the Microscope is a blog about women and science education. They collect stories from women involved in science, technology, engineering and math with the goal of publishing a survival guide for young women in science.  In the month of May, Under the Microscope is sponsoring a project to get women to write a “report card” for their early math and science teachers. Hurry and add your stories by May 31.

%d bloggers like this: